skip to main content


Search for: All records

Creators/Authors contains: "Kang, Peter K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    The flow‐induced dissolution of porous rocks governs many important subsurface processes and applications. Solute mixing, which determines pore‐scale concentration fields, is a key process that affects dissolution. Despite its importance, the effects of pore‐scale mixing on large‐scale dissolution patterns have not been investigated. Here, we use a pore network model to elucidate the mixing effects on macroscopic dissolution patterns and solute transport. We consider two mixing rules at pore intersections that represent two end members in terms of the mixing intensity. We observe that the mixing effect on dissolution is the strongest at moderate Damköhler number, when the reactive and advective time scales are comparable. This is the regime where wormholes spontaneously appear. Incomplete mixing is shown to enhance flow focusing at the tips of the dissolution channels, which results in thinner wormholes and shorter breakthrough times. These effects on passive solute transport are evident independent of initial network heterogeneity.

     
    more » « less
  3. Abstract

    Fluids with different densities often coexist in subsurface fractures and lead to variable‐density flows that control subsurface processes such as seawater intrusion, contaminant transport, and geologic carbon sequestration. In nature, fractures have dip angles relative to gravity, and density effects are maximized in vertical fractures. However, most studies on flow and transport through fractures are often limited to horizontal fractures. Here, we study the mixing and transport of variable‐density fluids in vertical fractures by combining three‐dimensional (3D) pore‐scale numerical simulations and visual laboratory experiments. Two miscible fluids with different densities are injected through two inlets at the bottom of a fracture and exit from an outlet at the top of the fracture. Laboratory experiments show the emergence of an unstable focused flow path, which we term a “runlet.” We successfully reproduce the unstable runlet using 3D numerical simulations and elucidate the underlying mechanisms triggering the runlet. Dimensionless number analysis shows that the runlet instability arises due to the Rayleigh‐Taylor instability (RTI), and flow topology analysis is applied to identify 3D vortices that are caused by the RTI. Even under laminar flow regimes, fluid inertia is shown to control the runlet instability by affecting the size and movement of vortices. Finally, we confirm the emergence of a runlet in rough‐walled fractures. Since a runlet dramatically affects fluid distribution, residence time, and mixing, the findings in this study have direct implications for the management of groundwater resources and subsurface applications.

     
    more » « less
  4. Abstract

    Large discrepancies between well-mixed reaction rates and effective reactions rates estimated under fluid flow conditions have been a major issue for predicting reactive transport in porous media systems. In this study, we introduce a framework that accurately predicts effective reaction rates directly from pore structural features by combining 3D pore-scale numerical simulations with machine learning (ML). We first perform pore-scale reactive transport simulations with fluid–solid reactions in hundreds of porous media and calculate effective reaction rates from pore-scale concentration fields. We then train a Random Forests model with 11 pore structural features and effective reaction rates to quantify the importance of structural features in determining effective reaction rates. Based on the importance information, we train artificial neural networks with varying number of features and demonstrate that effective reaction rates can be accurately predicted with only three pore structural features, which are specific surface, pore sphericity, and coordination number. Finally, global sensitivity analyses using the ML model elucidates how the three structural features affect effective reaction rates. The proposed framework enables accurate predictions of effective reaction rates directly from a few measurable pore structural features, and the framework is readily applicable to a wide range of applications involving porous media flows.

     
    more » « less
  5. Abstract

    Understanding mechanistic causes of non‐Fickian transport in fractured media is important for many hydrogeologic processes and subsurface applications. This study elucidates the effects of dead‐end fractures on non‐Fickian transport in three‐dimensional (3D) fracture networks. Although dead‐end fractures have been identified as low‐velocity regions that could delay solute transport, the direct relation between dead‐end fractures and non‐Fickian transport has been elusive. We systematically generate a large number of 3D discrete fracture networks with different fracture length distributions and fracture densities. We then identify dead‐end fractures using a novel graph‐based method. The effect of dead‐end fractures on solute residence time maximizes at the critical fracture density of the percolation threshold, leading to strong late‐time tailing. As fracture density increases beyond the percolation threshold, the network connectivity increases, and dead‐end fractures diminish. Consequently, the increase in network connectivity leads to a reduction in the degree of late‐time tailing. We also show that dead‐end fractures can inform about main transport paths, such as the mean tortuosity of particle trajectories. This study advances our mechanistic understanding of solute transport in 3D fracture networks.

     
    more » « less